Trans-Repression of Gene Activity Upstream of T-DNA Tagged RLK902 Links Arabidopsis Root Growth Inhibition and Downy Mildew Resistance
نویسندگان
چکیده
Receptor-like kinases (RLKs) constitute a large family of signal perception molecules in Arabidopsis. The largest group of RLKs is the leucine-rich repeat (LRR) class that has been described to function in development and defense. Of these, CLAVATA1 (CLV1) and ERECTA (ER) receptors function in maintaining shoot meristem homeostasis and organ growth, but LRR RLKs with similar function in the root remain unknown. For the interaction of Arabidopsis with the oomycete pathogen Hyaloperonospora arabidopsidis the involvement of LRR RLKs has not been demonstrated. A set of homozygous T-DNA insertion lines mutated in LRR RLKs was investigated to assess the potential role of these receptors in root meristem maintenance and compatibility. One mutant line, rlk902, was discovered that showed both reduced root growth and resistance to downy mildew in a recessive manner. The phenotypes of this mutated line could not be rescued by complementation, but are nevertheless linked to the T-DNA insertion. Microarray studies showed that gene expression spanning a region of approximately 84 kb upstream of the mutated gene was downregulated. The results suggest T-DNA mediated trans-repression of multiple genes upstream of the RLK902 locus links both phenotypes.
منابع مشابه
Primary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis
There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...
متن کاملFunctional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana
Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...
متن کاملDowny mildew resistance in Arabidopsis by mutation of HOMOSERINE KINASE.
Plant disease resistance is commonly triggered by early pathogen recognition and activation of immunity. An alternative form of resistance is mediated by recessive downy mildew resistant 1 (dmr1) alleles in Arabidopsis thaliana. Map-based cloning revealed that DMR1 encodes homoserine kinase (HSK). Six independent dmr1 mutants each carry a different amino acid substitution in the HSK protein. Am...
متن کاملEctopic expression of RESISTANCE TO POWDERY MILDEW8.1 confers resistance to fungal and oomycete pathogens in Arabidopsis.
Broad-spectrum disease resistance is a highly valuable trait in plant breeding and attracts special attention in research. The Arabidopsis gene locus RESISTANCE TO POWDERY MILDEW 8 (RPW8) contains two adjacent homologous genes, RPW8.1 and RPW8.2, and confers broad-spectrum resistance to powdery mildew. Remarkably, the RPW8.2 protein is specifically localized to the extrahaustorial membrane (EHM...
متن کاملArabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9.
The Arabidopsis Ler-RPP27 gene confers AtSgt1b-independent resistance to downy mildew (Peronospora parasitica) isolate Hiks1. The RPP27 locus was mapped to a four-bacterial artificial chromosome interval on chromosome 1 from genetic analysis of a cross between the enhanced susceptibility mutant Col-edm1 (Col-sgt1) and Landsberg erecta (Ler-0). A Cf-like candidate gene in this interval was PCR a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011